

Mark Scheme (Results)

October 2019

Pearson Edexcel International Advanced Level In Physics (WPH13) Paper 01 Practical Skills in Physics I

Question	Answer		Mark
Number			
1 (a)	Reaction time	(1)	(1)
	Or timer not reset to zero	(1)	(1)
1 (b)(i)	Student – 2 marks		
()()			
	• Students' values of t are within a range of 0.16 s		
	Or calculates mean t and difference to furthest value of t (0.11 s)		
	Or calculates percentage uncertainty for the 5 values	(1)	
	Reaction time is comparable to the range	(1)	
	Or difference between values can be explained by reaction time	(1)	
	<u>Teacher</u> – 2 marks		
	• Range of the other 4 values is 0.04 s		
	Or uncertainty of other 4 values is 0.02 s		
	Or calculates percentage uncertainty for the other 4 values		
	Or calculates percentage difference of student 4's value and the mean	(1)	
	• Comparison between Student 4's value and the range/uncertainty of the		
	other 4 values.	(1)	(4)
	Or the (percentage) difference between 0.75 and the other values is large	(1)	(4)
1 (b)(ii)	Attempt to calculate mean (using 4 or 5 values)	(1)	
1 (0)(11)	0.89 s given to 2 s.f. (0.86 s if all 5 values used)	(1)	
		,	(2)
	Example of Calculation		
	Mean time = $(0.88 + 0.87 + 0.91 + 0.88) / 4 = 0.885 \text{ s}$		
1 (b)(iii)	• Use of half range (0.02 s)		
	Or difference between mean and the value furthest from mean	(1)	
	• Percentage uncertainty = 2 %	(1)	(2)
	Allow ecf of mean time from 1(b)(ii)		
	Example of Calculation		
	Percentage uncertainty = $(0.02 / 0.89) \times 100 \% = 2.247 \%$		
	J (1 0 = 1 0 102) 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
1 (b)(iv)	• Use of $s = v t$ with $v = 330 \text{ m s}^{-1}$	(1)	
	with a correct maximum time	(1)	
	• Correct use of factor of 2	(1)	
	Maximum distance value calculated	(1)	(4)
	Accept maximum time from table		
	Allow ecf of mean and percentage uncertainty if calculating maximum time		
	value		
	Example of Calculation		
	$s = 330 \text{ m s}^{-1} \times (0.91 \text{ s} \div 2)$		
	s = 150.2 m Total for question 1		13
	Total for question 1		13

Question	Answer		Mark
Number			
2 (a)	Measure the distance at which the plastic sphere lands with a ruler On measure the lowest angle with a protection.	(1)	
	Or measure the launch angle with a protractor	(1)	
	• Repeat measurements (for each angle) and calculate the mean d	(1)	
	• Plot a graph of d and θ , and use to find θ for maximum d value	(1)	
	Or continue changing θ until d decreases to find maximum	(1)	(4)
	• Around the maximum d take measurements for smaller changes in angle	(1)	(4)
2 (b)	Max 2 from		
	Parallax error when reading angle/distance	(1)	
	Angle not zero when launcher is horizontal	(1)	
	Air resistance on the plastic sphere so velocity reduces	(1)	
	• <i>v</i> not constant due to friction in the launcher tube (which depends upon		
	angle)	(1)	(2)
	Total for question 2		6

Question Number	Answer		Mark
3 (a)	 If the rod has uniform diameter it balances (horizontally) with the thread at 15 cm because the mass/moment of the rod either side of the thread is equal Or because the line of action of weight is through the pivot 	(1)	
	Or because the centre of mass would be at 15 cm	(1)	(2)
	Accept "horizontal" as a description of the rod being balanced horizontally Accept "in the middle" as a description of 15 cm		
3 (b)(i)	• value between 0.40 and 0.45 V	(1)	(1)
	0.45		
	y = 1.3x + 0.02		
	0.35		
	0.30 >		
	0.25 Gential difference of the state of the		
	0.20 0.15		
	0.10		
	0.05		
	0.00 0.05 0.10 0.15 0.20 0.25 0.30 Length / m		
3 (b)(ii)	 Use of ratio of resistance = ratio of p.d. Or Use of V = IR with R_{rod} = 0.070 Ω to calculate current V_{Terminal} = 1.6 V Allow ecf for use of their V value from 3(b)(i) 	(1)(1)	(2)
	Example of Calculation $V / V_{T} = R / R_{T}$ $V_{T} = (V \times R_{T}) / R$ $V_{T} = (0.41 \text{ N} \times 0.27 \text{ O}) / 0.070 \text{ O} = 1.58 \text{ V}$		
3 (c)	 V_T = (0.41 V × 0.27 Ω) / 0.070 Ω = 1.58 V Further readings would make the line of best fit more accurate Giving a more accurate value for the p.d. of the rod (at 30cm) 	(1) (1)	(2)
	Total for question 3		7

Question Number	Answer		Mark
4 (a)	• Calculates $\frac{angle\ of\ rotation}{concentration\ of\ solution}$ for two pairs of values	(1)	
	• Calculates $\frac{angle\ of\ rotation}{concentration\ of\ solution}$ for at least one other pair of values	(1) (1)	(3)
	Comparative statement consistent with their values	(1)	
	Accept equivalent calculations of $\frac{concentration \ of \ solution}{angle \ of \ rotation}$		
	or $k = \frac{angle \ of \ rotation}{(concentration \ of \ solution \times depth \ of \ solution)}$		
4 (b)	Higher power lamp would have a heating effect on the solution Or Higher power lamp would increase the temperature of the solution	(1)	
	Heating would cause expansion of the sucrose solution Or heating would cause evaporation of the sucrose solution	(1)	
	 Which would change the concentration/density (of sucrose solution) 	(1)	(3)
4 (c)	Comparison between		
	angle of rotation = $k \times concentration$ of solution $\times depth$ of solution and $y = mx (+c)$	(1)	
	 Plot a graph of angle of rotation and concentration of solution Or plot a graph of angle of rotation and concentration of solution × depth 		
	of solution	(1)	(2)
	Correct method for calculating k for their graph described	(1)	(3)
	Total for question 4		9

Question	Answer		Mark
Number			
5 (a)	Higher photon energy means higher frequency light Or higher photon energy means using ultraviolet light	(1)	
	• There is an increased risk when using ultraviolet light Or using visible light is no/low risk	(1)	(2)
	Accept any named EM radiation with higher frequency than visible light		
5 (b)	Use of W = VQ		
- ()	$\mathbf{Or}\ W = \mathbf{e}V$	(1)	
	• $W = (-)2.5 \times 10^{-19} \text{ J}$		
	Or $W = 1.58 \text{ eV}$	(1)	(2)
	Example of Calculation		
	$W = 1.58V \times 1.6 \times 10^{-19} \text{ C}$		
	$W = 2.53 \times 10^{-19} \mathrm{J}$		
5 (c)(i)	• Correct $1/\lambda$ values to 2 or 3 s.f.	(1)	
	Labels axes with quantities and units	(1)	
	• Sensible scales	(1) (2)	
	• Plotting 1.0 y = 1.2253x - 1.6624.	(1)	(6)
	• Line of best fit	(1)	
	$1/\lambda \qquad \text{Mean } V$		
	λ / nm /×10 ⁶ Wean V ≥ 1.0		
	m^{-1} \rightarrow \rightarrow \rightarrow \rightarrow		
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
	440 2.27 1.10 ≥ 0.6		
	470 2.13 0.94 0.4		
	530 1.89 0.66 0.2		
	570 1.75 0.46		
	620 1.61 0.34 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0		
	Accept $1/\lambda$ in nm ⁻¹ or pm ⁻¹ at this		
	stage.		
5 (c)(ii)	Calculates gradient using large triangle	(1)	
	• Use of $h = \frac{gradient \times e}{c}$ with their gradient	(1)	
	• $h = (6.2 \text{ to } 7.0) \times 10^{-34} \text{ J s}$	(1)	(3)
	(0.2 to 7.0) \ 10 3 S		
	Example of Calculation		
	gradient = $\frac{1.4V - 0.2V}{(2.50 - 1.50) \times 10^6}$ = 1.2 × 10 ⁻⁶ V m ⁻¹		
	$ (2.50-1.50) \times 10^{6} $ $ 1.2 \times 10^{-6} \times 1.6 \times 10^{-19} $		
	$h = \frac{1.2 \times 10^{-6} \times 1.6 \times 10^{-19}}{3.0 \times 10^{8}} = 6.4 \times 10^{-34} \text{ J s}$		
5 (d)	Max two from		
	Block out external light sources	(1)	
	Use a larger range of wavelengths/frequencies	(1)	
	Use filters with a narrower frequency band	(1)	
	Use LEDs of known frequency	(1)	(2)
	Use more sensitive <u>ammeter</u>	(1)	(2)
	Total for question 5		15
			10